The objectives are:

  • Objective 1. Research and development of aerial manipulation methods and technologies required to perform the industrial inspection and maintenance. Two sub-objectives can be distinguished:
    • 1.1 Based on previous partner results, developing systems which are able to grab and dock with one or more arms and perform dexterous accurate manipulation with another arm. Also develop helicopter-based aerial manipulators, with greater payload and flight endurance, and with a dexterous arm to provide advanced manipulation capabilities by means of force interactions and hand-eye coordination using a movable camera with another light arm
    • 1.2 New methods and technologies for platforms which can fly and manipulate with the coordinated motion of the arms addressing constrained scenarios in which it is dangerous to use the helicopter and where it is not possible to grab to perform I&M operation.
  • Objective 2. Validation in the industrial environment of the technologies developed in Objective 1.1 in the following applications:
    • Application 1: Installation and maintenance of permanent Non Destructive Tests (NDT) sensors on remote components such as pipe works, fire flares or structural components. This application assumes the existence of appropriate housing for the sensor to allow a mounted fixation by dexterous handling. The application involves the preparation of structures to install the sensors (drilling a hole into insulation, removing paint etc.), the installation of the sensors and the finishing of the structure.
    • Application 2: Deploying and maintaining a mobile robotic system permanently installed on a remote structure. Assuming the presence of a newly designed mobile robot allowing easy exchange and maintenance of components (e.g., batteries etc.), the application consists of the use of the aerial robot to maintain the robot permanently installed in the structure without costly and dangerous human operations. This objective is required to reach TRL5.

objectives

To achieve the above objectives AEROARMS will develop the first aerial telemanipulation system with advanced haptic capabilities able to exert significant forces with an industrial robotic arm, as well as autonomous control, perception and planning capabilities. Special attention will be paid to the design and system development in order to receive future certification taking into account ATEX and RPAS regulations. AEROARMS is strongly related to ICT 23–2014: Robotics enabling the emergence of aerial robots, with manipulation capabilities to operate in industrial I&M, which will be validated in in oil and gas plants to reach TRL5.